Table of contents
- 1. Introduction to Statistics53m
- 2. Describing Data with Tables and Graphs2h 1m
- 3. Describing Data Numerically1h 48m
- 4. Probability2h 26m
- 5. Binomial Distribution & Discrete Random Variables2h 55m
- 6. Normal Distribution & Continuous Random Variables1h 48m
- 7. Sampling Distributions & Confidence Intervals: Mean1h 17m
- 8. Sampling Distributions & Confidence Intervals: Proportion1h 20m
- 9. Hypothesis Testing for One Sample1h 8m
- 10. Hypothesis Testing for Two Samples2h 8m
- 11. Correlation48m
- 12. Regression1h 4m
- 13. Chi-Square Tests & Goodness of Fit1h 30m
- 14. ANOVA1h 4m
6. Normal Distribution & Continuous Random Variables
Standard Normal Distribution
Struggling with Statistics for Business?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
Find the area of the shaded region under the standard normal distribution.

A
0.7881
B
0.7119
C
0.2119
D
0.2881

1
Understand that the shaded region under the standard normal distribution curve represents the probability between two z-scores. In this case, the z-scores are 0 and 0.8.
Recall that the standard normal distribution is symmetric around the mean, which is 0, and has a standard deviation of 1. The total area under the curve is 1.
Use the standard normal distribution table (z-table) to find the cumulative probability for z = 0.8. This value represents the area under the curve from the far left up to z = 0.8.
Find the cumulative probability for z = 0 using the z-table. This value represents the area under the curve from the far left up to z = 0.
Subtract the cumulative probability at z = 0 from the cumulative probability at z = 0.8 to find the area of the shaded region between these two z-scores.
Watch next
Master Finding Standard Normal Probabilities using z-Table with a bite sized video explanation from Patrick
Start learning