Bilgisayarlar sınavları gerçekten işaretleyebilir mi? ELT otomatik değerlendirmelerinin avantajları

ɫèAV Languages
Sembollerle bir dizüstü bilgisayarda yazan eller

Yapay Zeka (AI) kullanımı da dahil olmak üzere otomatik değerlendirme, en yeni eğitim teknolojisi çözümlerinden biridir. Sınav işaretleme sürelerini hızlandırır, insan önyargılarını ortadan kaldırır ve en az insan sınav görevlileri kadar doğru ve güvenilirdir. Yenilikler devam ettikçe, bu öğretmenler ve öğrenciler için gerçek bir oyun değiştiricidir.

Bununla birlikte, anlaşılır bir şekilde ELT topluluğunda birçok soru ve bazen şüpheyle karşılandı - bilgisayarlar konuşma ve yazma sınavlarını gerçekten doğru bir şekilde işaretleyebilir mi?

Cevap kocaman bir evet. Dünyanın her yerinden öğrenciler zaten yapay zeka dereceli sınavlara giriyor. ve Versantsınavları, sınava girenlerin nerede yaşadıklarına veya aksanlarının veya cinsiyetlerinin ne olduğuna bakılmaksızın konuşma ve yazma sınavları için tarafsız, adil ve hızlı otomatik puanlama sağlar.

Bu makale, yapay zeka otomatik puanlamasında yer alan ana süreçleri açıklayacak ve yapay zeka teknolojilerinin tutarlı uzman insan yargılarının temelleri üzerine inşa edildiğine dikkat çekecektir. Öyleyse, otomatik puanlama ve yapay zeka konusundaki kafa karışıklığını giderelim ve hem öğretmenlere hem de öğrencilere nasıl yardımcı olabileceğini inceleyelim.

Yapay zeka ve geleneksel otomatik puanlama

Her şeyden önce, geleneksel otomatik puanlama ile yapay zeka arasında ayrım yapalım. Otomatik puanlama hakkında konuştuğumuzda, genellikle, çoktan seçmeli veya cloze öğeleri olan öğeleri puanlamayı kastediyoruz. Cümleleri yeniden sıralamanız, açılır listeden seçim yapmanız, eksik bir kelimeyi eklemeniz gerekebilir - bu tür şeyler. Bu soru türleri, belirli becerileri test etmek için tasarlanmıştır ve otomatik puanlama, her seferinde hızlı ve doğru bir şekilde işaretlenebilmelerini sağlar.

Bunun gibi otomatik olarak puanlanan öğeler, dinleme ve okuduğunu anlama gibi alıcı becerileri değerlendirmek için kullanılabilirken, yazma ve konuşmanın üretken becerilerini işaretleyemezler. Her öğrencinin yazılı ve sözlü öğelerdeki tepkisi farklı olacaktır, peki bilgisayarlar bunları nasıl işaretleyebilir?

Yapay zekanın devreye girdiği yer burasıdır.

Yapay zekanın, örneğin tıbbi teşhiste olduğu gibi, büyük miktarda yapılandırılmamış veriyle etkili ve %100 doğru bir şekilde başa çıkmaya ihtiyaç duyulan alanlarda nasıl giderek daha fazla kullanıldığı hakkında çok şey duyuyoruz. Dil testinde AI, yazılı ve sözlü testleri derecelendirmek için özel bilgisayar yazılımı kullanır.

Yapay zeka, konuşma sınavlarını puanlamak için nasıl kullanılır?

İlk adım, her dil için konuşmayı tanıyabilen ve onu dalga biçimlerine ve metne dönüştürebilen bir akustik model oluşturmaktır. Bu teknoloji eskiden çok sıra dışı olsa da, akıllı telefonlarımızın çoğu artık bunu yapabiliyor.

Bu akustik modeller daha sonra bir testteki her bir istemi veya öğeyi puanlamak için eğitilir. Bunu, önce öğeleri puanlamak için çift işaretleme kullanarak insan uzman puanlayıcıları kullanarak yapıyoruz. Her madde için yüzlerce sözlü yanıt alırlar ve bu 'Standartlar' daha sonra motoru eğitmek için kullanılır.

Daha sonra, insan tarafından işaretlenmiş çok daha fazla öğeyi besleyerek eğitilmiş motoru doğrularız ve makine puanlarının insan puanlarıyla çok yüksek oranda ilişkili olup olmadığını kontrol ederiz. Herhangi bir öğe için bu gerçekleşmezse, insan işaretleyiciler tarafından belirlenen standartla eşleşmesi gerektiğinden onu kaldırırız. .95-.99 arasında bir korelasyon bekliyoruz. Bu, testlerin %95-99 arasında, insan tarafından işaretlenmiş numunelerle tamamen aynı şekilde işaretleneceği anlamına gelir.

Bu, insan işaretli konuşma testlerinin güvenilirliğine kıyasla inanılmaz derecede yüksektir. Özünde, AI motorunu eğitmek için bir grup son derece uzman insan değerlendirici kullanıyoruz ve ardından standartları defalarca kopyalanıyor.

Yapay zeka, yazma sınavlarını puanlamak için nasıl kullanılır?

AI yazma puanlamamız, adı verilen bir teknoloji kullanır. LSA, yalnızca yüzeysel özelliklerine değil, kelimelerin arkasındaki anlama dayalı olarak yazmayı analiz edebilen ve puanlayabilen bir doğal dil işleme tekniğidir.

Konuşma tanıma akustik modellerimize benzer şekilde, önce dile özgü bir metin tanıma modeli kuruyoruz. Sisteme büyük miktarda metin besliyoruz ve LSA, kelimelerin birbirleriyle nasıl ilişkili olduğunu ve örneğin İngilizce dilinde nasıl kullanıldığını öğrenmek için yapay zeka kullanıyor.

Dil modeli oluşturulduktan sonra, motoru bir testteki her yazılı öğeyi puanlamak için eğitiriz. Konuşan maddelerde olduğu gibi, bunu da önce öğeleri puanlamak için insan uzman puanlayıcıları kullanarak, çift işaretleme kullanarak yapıyoruz. Her bir madde için yüzlerce yazılı yanıt alırlar ve bu 'Standartlar' daha sonra motoru eğitmek için kullanılır.

Daha sonra, insan tarafından işaretlenmiş çok daha fazla öğeyi besleyerek eğitilmiş motoru doğrularız ve makine puanlarının insan puanlarıyla çok yüksek oranda ilişkili olup olmadığını kontrol ederiz.

Ölçüt her zaman uzman insan puanlarıdır. Yapay zeka sistemimiz insan işaretleyiciler tarafından verilen puanlarla yakından eşleşmiyorsa, insan işaretleyiciler tarafından belirlenen standartla eşleşmesi çok önemli olduğundan öğeyi kaldırırız.

AI'nın birden fazla özelliği işaretleme yeteneği

İnsan belirteçlerinin konuşma ve yazılı öğeleri puanlamada karşılaştıkları zorluklardan biri, tek bir öğe üzerinde birçok özelliği değerlendirmektir. Örneğin, konuşmayı değerlendirirken ve puanlarken, içerik, akıcılık ve telaffuz için ayrı puanlar vermeleri gerekebilir.

Yazılı yanıtlarda, işaretleyicilerin kelime dağarcığı, stil ve dilbilgisi için bir yazı parçasını puanlaması gerekebilir. Etkili bir şekilde, her bir öğeyi en az üç kez, belki de daha fazla işaretlemeleri gerekebilir. Bununla birlikte, AI sistemlerini konuşma ve yazmadaki her özellik puanı konusunda eğittikten sonra, herhangi bir sayıda özellikteki öğeleri anında ve hatasız olarak işaretleyebilirler.

Yapay zekanın önyargı eksikliği

Herhangi bir test için temel bir öncül, herhangi bir adaya hiçbir avantaj veya dezavantaj verilmemesi gerektiğidir. Başka bir deyişle, olumlu veya olumsuz önyargı olmamalıdır. İnsan işaretli konuşma ve yazılı değerlendirmelerde bunu başarmak çok zor olabilir. Aslında, adaylar genellikle bir başkası onları duymuş veya çalışmalarını okumuş olsaydı farklı bir puan alabileceklerini düşünürler.

Yapay zeka sistemlerimiz önyargı sorununu ortadan kaldırıyor. Bu, konuşma ve yazma yapay zeka sistemlerimizin çok çeşitli insan aksanları ve yazma türleri üzerinde eğitilmesini sağlayarak yapılır.

Motorlarımızı eğitmek için mükemmel anadili aksanları veya yazı stilleri istemiyoruz. Dünyanın dört bir yanından yerel olmayan temsili örnekler kullanıyoruz. Konuşma ve yazma puanlaması için yapay zeka sistemlerimizi ilk kurduğumuzda, öğelerimizi denedik ve milyonlarca öğrenci yanıtını kullanarak motorlarımızı eğittik. Yeni öğeler geliştirildikçe bunu yapmaya devam ediyoruz.

Yapay zeka otomatik değerlendirmesinin avantajları

Ev ödevi testlerini ve sınavlarını elle işaretlemekte yanlış bir şey yoktur. Aslında, öğretmenlerin öğrencilerini tanımaları ve kişisel geri bildirim ve tavsiyelerde bulunmaları çok önemlidir. Bununla birlikte, günlük veya haftalık yüzlerce testi manuel olarak düzeltmek tekrarlayıcı, zaman alıcı, her zaman güvenilir olmayabilir ve sınıfta öğrencilerle birlikte çalışmaktan zaman alabilir. Biçimlendirici ve özetleyici değerlendirmelerde yapay zekanın kullanılması, öğrenciler için değerlendirilen uygulama süresini artırabilir ve öğretmenler için not yükünü azaltabilir.

Dil öğrenimi yüksek yeterlilik seviyelerine ilerlemek zaman alır, çok zaman alır. Yapay zekanın karma kullanımı şunları yapabilir:

  • Kişiselleştirilmiş öğrenme ve tanısal değerlendirme geri bildirimi sağlamak için biçimlendirici değerlendirmeninartan önemini ele alın

  • Öğrencilerin tahsis edilen öğretim süresi içinde ve dışında pratik yapmalarına ve anında geri bildirim almalarına izin verin

  • Öğretmenlerin iş yükü sorununu ele alın

  • İnsanların en iyi yaptığı ve makinelerin en iyi yaptığı şeylerden yararlanarak insanlar ve makineler arasında erdemli bir kombinasyon oluşturun.

  • Yüksek riskli testlerde adil, hızlı ve tarafsız özetleyici değerlendirme puanları sağlayın.

Umarız bu makale, yapay zekanın dil testlerimizde konuşma ve yazmayı değerlendirmek için nasıl kullanıldığına dair birkaç önemli soruyu yanıtlamıştır. Google'ın Baş Bilim İnsanı ve Stanford Profesörü Fei-Fei Li'den ilginç bir alıntı, yapay zekayı şöyle tanımlıyor:

"Öğrencilerime sık sık 'yapay zeka' adıyla yanıltılmamalarını söylüyorum - bunda yapay bir şey yok; Yapay zeka insanlar tarafından yapılır, insanlar gibi davranması ve nihayetinde insan yaşamlarını ve insan toplumunu etkilemesi amaçlanır."

Biçimlendirici ve özetleyici değerlendirmelerde yapay zeka asla öğretmenlerin rolünün yerini almayacaktır. Yapay zeka öğretmenleri destekleyecek, öğrencilerin kendilerini geliştirmeleri için sonsuz fırsatlar sunacak ve yavaş, güvenilmez ve genellikle adil olmayan yüksek riskli değerlendirmelere bir çözüm sunacaktır.

ELT'de yapay zeka değerlendirmelerine örnekler

ɫèAV'da, yapay zeka teknolojisini kullanarak bir dizi değerlendirme geliştirdik.

Versant

Versant testleri, herhangi bir okulda, kuruluşta veya işletmede dil yeterlilik ölçütleri oluşturmaya yardımcı olacak harika bir araçtır. Öğrenci için uygun seviyeyi belirlemek için yerleştirme testleri için özel olarak tasarlanmıştır.

PTE Academic

, bir üniversiteye yerleşmek, iş bulmak veya vize almak için İngilizce düzeylerini kanıtlaması gerekenlere yöneliktir. Testleri puanlamak için yapay zekayı kullanır ve sonuçlar beş gün içinde hazır olur.

ɫèAV English International Certificate (PEIC)

ɫèAV English International Certificate (PEIC) ayrıca otomatik değerlendirme teknolojisini kullanır. Evde veya okulda (veya güvenli bir test merkezinde) isteğe bağlı olarak iki saatlik bir test ile. Gelişmiş konuşma tanıma ve sınav notlandırma teknolojisi ile dünya çapındaki profesyonel ELT sınav işaretleyicilerinin uzmanlığının bir kombinasyonunu kullanan patentli yazılımımız, İngilizce dil becerisini ölçebilir.

Öğrenme ve testlerimizde yapay zeka kullanımı hakkında daha fazla bilgiyi buradan okuyun veya öğrencileriniz için hangi İngilizce testinin doğru olduğunu merak ediyorsanız, 'Öğrencilerim için hangi sınav doğru?' yazımıza göz atmayı unutmayın.

ɫèAV'dan daha fazla blog

  • Children sat next to their teacher in a classroom, smiling at eachother

    Tailoring language learning for diverse needs with the GSE

    By Heba Morsey
    Okuma zamanı: 5 minutes

    Why inclusive language teaching matters more than ever

    You’ve probably heard the word “inclusive” more and more in recent years, though I first encountered it over 20 years ago. (I say 20 because that’s when I graduated, and we had a course on diverse learners called “individual differences.” But back then, actually meeting their needs wasn’t nearly as comprehensive as it is today.)

    Today, learners come with a wide range of proficiency levels, cognitive styles, educational background, and personal goals. That’s why — it’s essential. In simple terms, inclusive teaching means making sure all learners feel they belong and can succeed.

    It calls for differentiated instruction, flexible assessment and learning materials that respect individual needs. That’s where the Global Scale of English (GSE) comes in.

  • woman uses highlighter on book

    Grammar 101: tips and tricks to help improve your Engish writing

    By Hannah Lawrence
    Okuma zamanı: 4 minutes

    I've always been fascinated by language and writing: as a child, I wrote newsletters for my classmates and books about my imaginary friends' adventures. That love of words eventually led me into a career as a writer, editor and proofreader. Over my career, I've checked thousands of reports, articles and blogs – and I see the same grammatical mistakes time and time again.

    In this blog series, I'll share my favourite tips and tricks to help you remember those tricky grammar rules; whether you're writing for work, to learn or just for fun, these posts will help you improve your English and write with more confidence. Here are the top three grammar rules that people ask me to explain:

    1) "Which" or "that"?

    2) "Less" or "fewer"?

    3)"Me" or "I"?

  • A teacher sat at a table with young students working together

    What is Content and Language Integrated Learning?

    By Joanna Wiseman
    Okuma zamanı: 4 minutes

    Content and Language Integrated Learning (CLIL) is an approach where students learn a subject and a second language at the same time. A science course, for example, can be taught to students in English and they will not only learn about science, but they will also gain relevant vocabulary and language skills.

    It’s important to note that CLIL is not a means of simplifying content or reteaching something students already know in a new language. CLIL courses should truly integrate the language and content in order to be successful – and success is determined when both the subject matter and language is learned.

    Who is CLIL for?

    CLIL can work for students of any age, all the way from primary level to university and beyond. So long as the course content and language aims are designed with the students’ needs in mind, there is no limit as to who can benefit from this teaching approach. However, it is most commonly found in primary and secondary school contexts.

    What are the main benefits of CLIL?

    Many teachers see CLIL as a more natural way to learn a language; when a subject is taught in that language there is a concrete reason to learn both at the same time. And as students have a real context to learn the language in, they are often more motivated to do so, as they can only get the most of the content if they understand the language around it.

    Moreover, being content focused, CLIL classes add an extra dimension to the class and engage students, which is especially advantageous in situations where students are unenthusiastic about learning a language.

    CLIL also promotes a deeper level of assimilation, as students are repeatedly exposed to similar language and language functions, and they need to produce and recall information in their second language.

    Furthermore, it has the advantage that multiple subjects can be taught in English, so that students’ exposure to the language is increased and their language acquisition is faster.

    CLIL also encourages students to develop 21st century skills, including the ability to think critically, be creative, communicate and collaborate.

    What are the challenges of CLIL?

    As CLIL is subject-focused, language teachers may also have to develop their own knowledge of new subjects in order to teach effectively.

    They must also structure classes carefully so that the students understand the content of the lesson, as well as the language through which the information is being conveyed.

    And when it comes to classroom management, educators need to be very aware of individual student understanding and progress.

    It’s therefore important to consistently concept check and scaffold the materials to be sure both the language and content are being learned.

    How can you apply CLIL to your class?

    It’s important to have a strategy in place when applying CLIL in your courses. One of the key things to remember is that the language and subject content are given equal weight and that it shouldn’t be treated as a language class nor a subject class simply taught in a foreign language.

    According to Coyle’s 4Cs curriculum (1999), a successful CLIL class should include the following four elements:

    • Content – Progression in knowledge, skills and understanding related to specific elements of a defined curriculum
    • Communication – Using language to learn whilst learning to use language
    • Cognition – Developing thinking skills which link concept formation (abstract and concrete), understanding and language
    • Culture – Exposure to alternative perspectives and shared understandings, which deepen awareness of otherness and self

    Using a number of frameworks can help you prepare your lessons and make sure activities are challenging yet achievable for your learners.

    Bloom’s Taxonomy, for example, classifies learning objectives in education and puts skills in a hierarchy, from Lower Order Thinking Skills (LOTS) to Higher Order Thinking Skills (HOTS).

    In the diagram below, you can see the levels increasing in complexity from the base up to the triangle’s peak.